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ABSTRACT  

By defining the primary functions involved in conducting Unmanned Vehicle missions, it 

is possible to evaluate different configurations of organisations to support these 

functions.  These could vary, for instance, from a linear chain to a highly connected 

network. Each structure has different advantages and disadvantages, in terms of 

information flow, and each poses different costs in terms of organisational behaviour and 

management. By representing the alternative structures in terms of use-case diagrams 

(which are aligned to the NATO Architecture Framework), and by modelling the activity 

described in these views, it is possible to compare and contrast structures and explore 

their resilience.  Modelling is performed in two ways. First, Event Calculus is used to 

consider the binding between tasks in order to explore unintended consequences of 

particular configurations. This helps demonstrate how some configurations can lead to 

potential problems and errors in information flow. Second, a form of dynamic use-case 

modelling is used to show how binding of tasks to actors can lead to changes in the 

structure of the organisation, particularly when the availability of actors becomes 

compromised or when tasks become blocked; thus, providing a novel approach to 

consider resilience in these networks. 

1.0 INTRODUCTION 

The purpose of the present paper is to describe two different, but complimentary, approaches to analysing 

military socio-technical systems (that is, systems comprising of people and technology) that we feel are 

most useful to promoting the design of safe and resilient systems for modern warfighting. Another 

motivation for the present work was to pilot these approaches prior to further work that will include an 

elicitation stage; as such the models considered herein should be regarded as ‘strawman’ that are not 

necessarily accurate to real operations. The present concept assumes a series of activities in military 

operations from a person on the ground calling in a UAV to its dispatch; these activities include planning, 

coordination and seeking legal clearance. One approach would be to see this as a linear chain of events. 

However, increasingly uncertainty in enemy identification and movement, together with rules of 

engagement intended to limit “blue-on-blue” and collateral damage may mean that linear chains are not 

always appropriate, particularly when the tempo of change in ground truth is particularly rapid.  However, 

there is a tension between safety and assurance and flexibility that must be balanced. In the present work 

therefore we model the same concept of operations in two different ways that embody different paradigms; 

linear workflow and distributed operations aided by computer support. Both models are produced using a 

formalism called the Event Calculus that allows reasoning about events over time using logical 

propositions. We then consider how these two different approaches could be manned using dynamic use 

cases. 
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2.0 THE EVENT CALCULUS 

The event calculus (EC) is a logic-based formalism for reasoning about events and time [1,2]. Although 

originally motivated by an interest in formalising the logical representation time and applications in 

database updating and narrative understanding, this technique has been used since in myriad applications 

including commonsense reasoning for artificial intelligence [3,4]; making business systems more flexible 

[5]; and high-level vision for cognitive robotics [6].  We propose it may also be used to represent and 

model time-varying elements of sociotechnical systems. 

The four key elements of the event calculus are sorts, fluents, events and time. Sorts are things in the 

world that we use to anchor our model upon (e.g., we might talk about a sort called a “target”and a 

specific type of target might be a “Suspicious vehicle”). Fluents are properties of the the world that have 

different truth values over time. Events, which occur at different points in time, alter the truth of values of 

fluents. Thus if a door opening event occurs at a given point in time, the truth value of the fluent “door 

closed” changes from true to false. We generally assume by default that the ‘commonsense law of intertia’ 

holds, that is, we assume that the door then remains open until an event occurs that causes it to be closed 

(or an event occurs that causes a door closing event to occur and so on). Furthermore, unless we know 

otherwise, we also assume that other events, such as switching on a light-switch, do not affect the state of 

the door. These assumptions mean that we do not have to write out large lists of all the things events do 

not do, just those things they do. Four basic EC predicates set out the formal relationship between fluents, 

events and time (Table 1). Combined with standard first-order logic, the EC has broad descriptive power 

not limited to; context-sensitive effects, triggered events, concurrency, indirect effects, nondeterministic 

effects, continuous change, and the representation of space, mental states, emotions etc. subject to a 

sufficient axiomisation. 

Predicate Explanation 

Happens(e,t) Event e happens at time t 

HoldsAt(f,t) Fluent f is true at time t 

Initiates(e,f,t) 
If event e occurs at time t, fluent 

f will be true after time t 

Terminates(e,f,t) 
If event e occurs at time t, fluent 

f will be false after time t 

Table 1. Event calculus predicates 

In terms of putting a system together, we combine a narrative of events (what events happened when and 

what the state of the world was at different points, see Figure 1), an axomisation of the domain of interest 

(what events do) together with the logic underlying the EC itself to produce a model that can be queried as 

to the truth value of fluents at given timepoints. Since the EC can be implemented using a computer these 

pieces of information take the form of a computer program that takes the form shown in Figure 2. In the 

present paper we focus on the ‘Discrete Event Calculus’ which represents time as integer timepoints [3] 

that we treat as arbitrary epochs. 
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Figure 1. A narrative of events 

 

Figure 2. Elements of an event calculus model (adapted from Mueller, 2006) 

While such a model would be useful in itself for checking, for example, whether the system as we 

understand it can be predicted to reach a successful end state (i.e., the truth value of a fluent standing for 

ultimate success of a mission is true) given a certain narrative of events, the event calculus also allows, by 

virtue of treating time symmetrically, different types of reasoning to take place (Figure 3). 
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Figure 3. Different types of temporal reasoning using the event calculus 

Given a start state and an ordered list of events, we can deduce what the possible end state(s) would be by 

deduction. Given an end state and a narrative of events we can also work out what the possible start 

state(s) were. Finally and perhaps most powerfully, given a start state and an end state we can also carry 

out a form of reasoning termed abduction, that is, we can generate a plan or set of plans leading from the 

start state to the end state. We may also wish to use a partial narrative/set of observations concerning the 

state of fluents in the world and use the event calculus to generate ways of filling the gaps consistent with 

those facts. For example, if we know a door was closed and the room was empty at timepoint 1, and that 

someone was in the room at timepoint 5, then it can be deduced that some point in between, the door was 

opened to allow someone to enter. If the door was also locked, this would imply that had to be unlocked 

and imply it turn that the person who unlocked it had a key and so on. 

Therefore in terms of modelling and evaluating a system, we have two main approaches that we can 

employ. We can change the system (as it were) by altering its constituent axioms, and we can change the 

narrative to test that system across different patterns of events. Indeed, by giving a narrative with a 

(semantically) negative ending (e.g., the fluent “target reached” is false) we can also generate narratives 

that expose latent and perhaps complex chains of events that can cause system failure [7]. While this is 

arguably a reductionist way of representing events and tasks within a system, it does to some extent avoid 

the worst excesses associated with representing tasks as either hierarchical or ordered in a manner that is 

brittle in the face of changing demands or elaboration [8,9]. Where events can be fluidly ordered or 

concurrent, this will be demonstrated, and if events do fall within a strict order, the reasons for this are 

directly demonstrable within the domain of interest itself (i.e., they result from genuine causal constraints 

and contingencies) rather than emerging as result of the analyst’s need to impose order. Further, with 

reference to the meanings of the fluents changed by events, events can also be considered as meaningful 

and are given a specific context relative to what we might call a ‘work story’ rather than being regarded as 

generic ‘operations per unit time’.  

Given the EC has broad powers of representation, in modelling any domain, particularly one as complex 

as a socio-technical system, it is necessary to decide at what level of analysis it is to be modelled and what 

sort of ontology should be used. For example, it would be possible (although not necessarily useful in the 

present case) to represent the system spatially, with entities that occupy particular positions in space. 

Alternatively, the mental states of a single individual could be represented in great detail. In the present 

instance we decided the most appropriate level of representation was to consider the decision chain as if it 

were a workflow model and as if it were distributed system governed by a contract-like protocol in which 
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participants are aware they can only do certain things if specific conditions are met. This is related to 

extant work in the EC literature for considering protocols in terms of commitments between entities [5,10] 

and the general area of modelling contracts and legal discourse in logic e.g., [14].  

 

2.1 System as workflow 

The first implementation of a work-flow for planning and tasking was based around considering tasks as 

part of a largely linear workflow as shown in Figure 4. The model was inspired by the author’s own 

observations of command teams at work although it should not be necessarily considered accurate but 

rather stands as a generic ‘strawman’ example to illustrate the approach. The purpose of the system is, 

from the entry point of target identification, to move through various forms of planning (threat assessment, 

coordination of airspace) and coordination/orgnisation (seeking approvals and clearances) until the point 

at which a UAV asset can be tasked and dispatched. Thus target identification can be regarded as the start 

state that initiates the process, and tasking assets can be regarded as the final endstate and goal. 

 

Figure 4. Workflow from target identification to the tasking of assets 
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This was modelled in DEC (Discrete Event Calculus, see [3]) using an axiomisation suggested by Nihim 

Kesim Cicekli and Yakup Yildirim [11] that meets the standards put forth Workflow Management 

Coalition to represent; sequential activity, AND-splits/joins, XOR-splits/joins and iteration [12].  

A set of axioms allow for activities to be in a state of being of either Active or Completed owing to 

Start and End activity events; 

 Initiates(Start(activity),Active(activity),time). 

 Terminates(Start(activity),Completed(activity),time). 

 Initiates(End(activity),Completed(activity),time). 

 Terminates(End(activity),Active(activity),time). 

Further axioms implement the logic of workflow, so for example in Figure 4, Activity B (Recommend 

target) can only occur once activity A (target identification) has Ended and when Activity B is not itself 

already active1. 

Happens(Start(B),time -> !HoldsAt(Active(B),time) & 

!HoldsAt(Repeatlock(B),time) & 

HoldsAt(Completed(A),time). 

Once axiomised a model is produced that can then be tested; given a fixed time frame of 26 epochs only a 

set of models were produced. Given this time limit, the left-hand thread (B→C→D1/D2→E→F→I) is 

constrained to only ‘fit’ if D1+D2 are concurrent; meanwhile there other models were possible but this 

only concerned when activities G (Engagement options) and H (JAG clearance) occurred; the limiting 

factor being JAG Clearance had to be completed in time to meet the synchronisation point of Final 

Approval (J) (see Figure 5; the latest that event H could have started would be epoch 14, thus the latest G 

could end would be epoch 13). Counterfactual models, where for example Assess Threat (D1) took an 

epoch longer to complete than Evaluate Assets (D2), because the chain as a whole cannot complete in 

time;  or when Final Approval (I) was given without Engagement Options (G) (because it meant in turn 

JAG clearance could not happen) occurring  were ruled out. 

                                                      
1 The ‘Repeatlock’ fluent is used to prevent repeated triggering of B in response to Completed(A) 

being true; it is only allowed to occur once. Mueller (2006, p. 258-259) utilises the expression  

!HoldsAt(Completed(A),time-1) to limit perseveration but this requires that B be triggered 

immediately after A is completed and only immediately after A is completed.  
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Figure 5. A legal path through the workflow model; S=Start (event), A=Active (fluent), E=End 
(event), C=Completed (fluent), in the dashed cells the fluents Active and Completed are both 

false. 

 

When a longer time frame was supplied (30 epochs) a wide range of plausible models were then possible, 

but clearly delays before synchronisation points propagated forward, thus in domain terms a delay in 

Coordinating Airspace (E) pushed back the eventual Task Assets (K) to at least a commensurate degree 

assuming no delays after that point.   

This way of modelling a decision chain highlights some of advantages and disadvantages of managing 

organisations in this way. A signal advantage of the workflow approach is that, for example, we can be 

assured that assets are not tasked before JAG clearance has been given as a prior synchronisation AND-

gate at the point of final approval requires that it has already happened. However, the issue of delays prior 

to synchronisation points propagating forward illustrates the disadvantages of working in this manner. 

Thus by choosing an axiomisation we can represent a way of thinking about things, in this case, the notion 

that decision chains should be largely linear and that through AND gating can be synchronised at given 

decision points (points E, I and K in the above).  
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2.2 A distributed system 

An alternative way of considering (and thus axiomising) a decision chain is in terms of information 

requirements and the states prior decision reach. This is broadly the notion that Network Enabled 

Capability/Network Centric Warfare will allow more distributed activities through the shared provision of 

information and great situational awareness not just of the situation in the field but also of what colleagues 

(perhaps geographically distributed across the battlefield or maybe even the world) are doing. With such 

information available to be pulled from and pushed onto the network on demand, there is no longer 

necessarily the requirement to wait to be passed that information sequentially in the planning process. This 

can increase efficiency and also allow the system to be more responsive to changing circumstances and 

perform more flexibly to take advantage of fleeting opportunities. However, there is the risk that such 

approaches could lead to desynchronisation of the team as a whole and dangerous or unwanted events 

occurring. This poses a problem for analysis and management: how can we be sure given that activities 

could occur in myriad orders that we have designed a protocol that will be safe? We suggest one way is to 

model the protocol using the Event Calculus. 

 

Another way of thinking about this is to consider a system protocol as a contract. As with written 

contracts, at various stages in the lifespan of contract certain things must be true for it to continue. In the 

event these things fail to be true, either the contract as a whole fails or certain tasks must be undertaken or 

re-undertaken in rectification. As well as a statement of what must happen, a contract will also describe 

various things that must not happen or else the contract to fail. Changes in these states either allow further 

actions that were anticipated to occur or trigger specific events in response.  Note that owing to the 

temporal extension of the contract, states may switch back and forth between being true and false during 

its lifetime. A particular problem in temporally extended contracts is where events and states might 

interact in unforeseen ways; this may occur because the contract itself is badly structured (this stepping 

back from the analogy, the decision chain has potential flaws) or because events have not unfolded in the 

order originally anticipated.  

 

In formalising a decision chain we used various fluents to represent this time not the status of given 

activities, but rather their outcomes; knowledge of the target’s location, JAG approval and so on, has 

planning been completed and so on. For example the fluent KnowLocationofTarget can become true 

only after target identification: 

Initiates(Targetidentification(target),KnowLocationTarget(target),time). 

(i.e., After target identification of a target, it becomes true that we know the location of a target). 

In the case of some activities they may alter more than one fluent. For example, in the case of coordinate 

airspace we use a fluent to record that this has occurred (because it is necessary for packaging the mission) 

and also that airspace has been deconflicted (which is later necessary at the point of tasking assets).  

Initiates(Coordinateairspace(target), 

Airspacecoordinated(target),time). 

Initiates(Coordinateairspace(target), Deconfliction(target),time). 

Similarly, other activities are possible only when multiple fluents are true; for example; it is only valid to 

give final approval (making the mission approved) when it is true that approval has been given and JAG 

clearance issued and we know the location of the target: 
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Happens(Finalapproval(target),time)-> HoldsAt(Approved(target),time) & 

HoldsAt(JAGcleared(target),time)& HoldsAt(KnowLocationTarget(target),time)  

It may at first blush appear curious that we have included the requirement to know the location of the 

target at such a late state as presumably we would have to know target location in advance of giving initial 

approval and JAG clearance. The point of its inclusion is that if we force a change in that fluent to false 

(i.e., we have lost the target), it is clear how the decision chain can shutdown or reiterate to a previous 

point depending on the circumstances. Final approval could not occur as there would be an inconsistency 

in narrative between not knowing the location of the target and needing to give final approval which 

requires knowledge of the location of the target: 

!HoldsAt(KnowlocationofTarget(Suspicioustruck),5) 

Happens(Finalapproval(Suspicioustruck),5) 

Furthermore by including these indirect dependencies we can ensure the same level of security that all that 

needs to be decided and known has been decided and known under more fluid orderings of events than a 

fixed task flow. Similarly, if we recast JAG approval as something that is either true or untrue at any point 

in the process (rather than making it a specific decision point in a linear chain) then this distributed 

protocol shows how it would be possible to withdraw approval at any point in the life of mission planning 

(as for example new information comes in) rather than at a single point.  Such an approach would be 

possible given modern IT and furthermore would arguably be more appropriate to warfighting in highly 

dynamic circumstances that feature high levels of uncertainty. The point at stake here is that ground truth 

can change faster than the planning cycle can be completed and executed, it may be necessary to look at 

ways of reorganising planning.  

An EC model can also ‘trap’ dangers inherent in a protocol. While in Figure 4 we see coordinating 

airspace is a procedural step dependent on the prior assessment of threat and assets, in our information 

requirements model we had not expressed this, nor had we made it a requirement for command approval; 

thus it was possible to find a path through the model that allowed a mission to be launched without 

airspace deconfliction having taken place. However, because the EC is elaboration tolerant, it was straight-

forward to add a clause that airspace deconfliction should be in place prior to mission packaging. In terms 

of constructing a model of a real-life domain, at such points the analyst would return to subject matter 

experts/observational data/documentary evidence and consider whether the problem lies in their 

knowledge of the domain or whether a real problem has indeed been identified.  

On setting these definitions up such that abduction (plan finding) could take place we found a range of 

models that complete all the required activities within 20 epochs. The general form of this class of models 

is shown in Figure 6. It is to be noted that while Figure 4 (workflow) was drawn and then formalised, this 

task flow was generated by the EC logic program itself and then drawn to permit comparison. It might also 

be considered slightly misleading in that in contrast to the workflow axiomisation, the event “Request 

BDA” is in point of fact as dependent upon “Target Identification” (which changes the 

KnowLocationOfTarget fluent from false to true) as it is on the preceeding “Engagement options” 

event (which changes the fluent Missionplanned from false to true).  
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Figure 6. Process generated by EC model on the basis of information requirements 

 

We did not use the same 2-state (active/completed) formalisation for each activity, but when adjusted into 

this form for post-hoc for comparison, we find Figure 7. Although it was not our intention to necessarily 

aim to find faster ways the decision chain could complete, owing to greater parallelism this version can 

complete at least six epochs (arbitrary time units) faster than the workflow form of the same concept of 

operations. It is also to be noted that, given a sufficiently long time limit, the workflow model in Figure 4 

was also one of the alternate models that could be produced; the distributed representation does not 

necessarily contradict the previous approach, rather it expands upon it and finds wider options on the basis 

of the information given to it. 

From the point of managing this process, we see that the approval and final approval activities have 

become pivotal synchronisation points, but that further, activities prior to the tasking of mission assets 

could take place before, rather than after, this point is reached. This could present challenges particularly 

in terms of commanders becoming situationally aware of the progress of the planning process itself. We 

assume that technology could have a part to play in this; indeed, the EC simulation we have produced 

(although not very user friendly at this stage given it consists entirely of textual logical propositions) could 

in fact form the backbone of a software package to assess in real-time what activities were possible, where 

bottlenecks were forming and whether (perhaps assuming various typical timings) the planning process 

can complete on time. We hope to undertake future work to evaluate this possibility of repurposing EC 

simulations as decision support tools. 
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Figure 7. A legal path through the distributed model found by the EC planner carrying out logical 
abduction. S=Start (event), A=Active (fluent), E=End (event), C=Completed (fluent), in the dashed 

cells the fluents Active and Completed are both false. Activity coding is per Figure 4. 

3.0 USE-CASES 

One way of examining the resilience of a task-actor network to disruption is some form of stress testing. 

Various approaches to the analysis of network resilience have been proposed [15] although there is little 

consensus at present as to which techniques and measures are most appropriate in given situations. In the 

present case we are concerned with networks of actors and functions which differ from the sorts of 

physical networks (e.g., the internet, transport networks) and intelligence networks (e.g., organization of 

terrorist cells) in that they are in a sense 2
nd

 order representations of a pattern of behavior in a work 

situation rather than entities in and of themselves. Therefore we first staffed the tasks described in Section 

2 in a generic manner (in the absence of more detailed real-world data identifying specific individuals) 

considering actors: Recce, Ops, Plans, Intel, JAG and Command. The pattern of staffing is shown in 

Figure 8. Recce is the agent outside the command group itself who makes the initial identification of the 

target. 
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Figure 8. Use-case (actors x tasks) 

A pattern of interactions between actors by shared tasks is shown in Figure 9. For example, the Recce 

(who call in the target) are connected indirectly to other actors via Ops who receive the call and begin the 

planning process. 

 

Figure 9. Collaboration graph 

 

We then submit this network to the removal of actor nodes. Because the networks represent what work 

actors could perform in given situations, we examine what it would mean for system functions if they did 

not perform that work and assume that each function requires at least one person to perform it. The stress 

test was carried using a simple Python script together with the NetworkX library [18]. In pseudo-code the 

script was as follows: 

 

START 

 Load and parse WESTT
2
 file format 

 Construct networks 

 Calculate network metrics 

 Rank nodes by degree (n of edges) 

 Loop start: 

  Calculate network metrics 

                                                      
2
 The WESTT (Workload, Error, Situation Awareness, Time and Teamwork) application is a system for representing and 

analysis team-based work and is described in [16] and [17]. 
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Remove node (in     ascending or descending order of degree) 

  Carry out clean-up 

  Remove orphan nodes 

  Report removal of orphaned task nodes 

  Loop end  

END 

 

The outputs of this process are shown in Figure 10. Two types of node removal were used. In the 

ascending pattern, actors were removed in ascending order of degree (that is, the number of connections 

they have). Conversely, in the descending pattern actors with the highest degree were removed first. When 

task nodes were orphaned, that is, no actor was connected to them (and thus no actor was doing that work) 

they were also removed and this was recorded. Taken together, the ascending condition gives what might 

be a best-case pattern (the ‘busiest’ in connectivity terms removed first) for node removal and the 

descending condition a worst case. Other patterns of disruption would fall between these extremes (subject 

to combinatorial possibilities that could be probed by trying random permutations).  
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Figure 10. Graph of usecase stress testing. 

The present example is arguably a little too small and straightforward to get the best out of this approach, 

but from the stress testing we see that the present design, as we have staffed it, puts great reliance on the 

availability of Ops and Command personnel without whose input things quickly deteriorate, with slightly 

less emphasis being put on Plans and Intel, and finally with JAG (and Recce, as we might expect) being 

relatively peripheral.  
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Because personnel are considered in terms of manning each activity, the usecase for both the workflow 

and distributed forms of the decision chain are the same. However, this does not take into account the 

workload that performing multiple actions at the same time would impose on staff; thus if we make the 

(simplistic) assumption that only one named person can carry out one action per epoch, and that where 

there is redundant capacity these individuals will be allocated to tasks they can perform, we end up with 

the slightly different usecase in Figure 11. This includes multiple Command, Intel and Ops staff to meet 

the potential for simultaneous demands on their time. 

This perhaps illustrates one of the downside of flexible scheduling of operations; it is possible that for 

individuals that either they may face considerable amounts of workload simultaneously or else, a larger 

staff may be required to make sure ‘peak demand’ can be met. In contrast, workflow-based systems are 

less likely to suffer from this as opportunities for workload to vary are restricted by the structure of tasks. 

 

Figure 11. Distributed use-case 

In future iterations of our EC-related work we intend to examine the issue of workload scheduling by staff 

in addition to consideration of the structure of activities. 
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4.0 CONCLUSION 

The purpose of the present work was to pilot test two relatively novel forms of analysis for sociotechnical 

systems. In our view both EC and dynamic usecases have different strengths and weaknesses. These can 

be summarised thus; 

 The event calculus is well-suited to modelling how systems perform over a period of time. 

 By using different axiomisations via EC, it is possible to compare different paradigms one might 

wish to apply to sociotechnical systems on a like-with-like basis. 

 There is a learning curve involved in forming adequate and appropriate propositions to capture the 

key elements of systems; however the output of this process is arguably much easier to understand 

than, for example, mathematical outputs, as logical statements translate easily into normal 

English. 

 Furthermore, the rather involved process of constructing axioms has the useful side effect that it 

forces the analyst to clarify their understanding of the system in a formal manner; arguably if we 

lack the information to construct axioms, we lack a detailed understanding of the system. Thus 

there is a benefit “in the doing” in addition to the output itself. 

 Constructing these models is time consuming. While not excessively so compared to comparable 

human factors methods, for larger and more complex systems than those considered here  it might 

be necessary to write a computer program that can itself produce EC logic programs rather than as 

in the present case, writing each line by hand. This approach has been used previously in work 

applying the EC to natural language understanding that employed a parser [13]. 

 Usecases are useful for visualising the relationships between agents and tasks (and the 

relationships between agents via tasks) and make it clear ‘at a glance’ which agents are most 

immersed in a given set of activities (and thus perhaps, most critical) and, through considering the 

number of connections, which agents face the greatest potential variations in workload. 

In terms of how the EC and usecases may fit in and around other analysis techniques in Human Factors 

and Systems Engineers, we suggest the overarching process from elicitation to measurement in Figure 12. 

Thus we begin with an elicitation and representation phase in which information about an existing system 

or specifications for a future system are collected. At this point, something like Hierarchical Task Analysis 

might take place which would also lead to the initial draft of an EC model. Then, through model finding 

(abduction in the EC), various forms the system could take are produced on the basis of the elicited facts. 

At this stage it may well be necessary to go back to elicit further information in order to “sanity check” 

outputs and also to tighten up any aspects of the axiomisation that appear unclear or open to question. 

Thus we see the construction of EC models as in part an interactive process where the models are ideally 

tested against reality as they are developed. 
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Figure 12. Suggested method for analytical prototyping 

Once models have been found, these can then be submitted to simulation and measurement (this may 

include dynamic use cases, and also Petri Nets and other workload and error analysis techniques). Event 

calculus could also be present at this stage to see whether the system is compatible with different (and 

perhaps exceptional) narratives of events. 
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